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T W O - D I M E N S I O N A L  P R O B L E M  OF A U N I F O R M  F L O W  

OF A T W O - L A Y E R  F L U I D  OF F I N I T E  D E P T H  P A S T  A C I R C U L A R  C Y L I N D E R  

I. V .  S t u r o v a  UDC 532.59 

The linear steady problem of an irrotational uniform flow past a horizontal circular cylinder 
located in the upper or in the lower layer of a two-layer fluid is solved by the multipole-expansion 
method. The flow is perpendicular to the axis of the cylinder. The fluid is assumed to be inviscid 
and incompressible, and the flow in each layer is assumed to be potential. The upper layer can 
be bounded by a free surface or a solid lid, and the lower layer by a rigid horizontal bottom. 

In recent years, the methods of calculating hydrodynamic loads acting on a submerged body of arbitrary 
shape which moves in a stratified fluid have intensely been developed [1-5]. In this connection, the problem 
of testing the numerical methods used is important and, therefore, it is useful to have a solution of the 
problem of a flow about a body of simple geometry that guarantees high accuracy of calculations. A circular 
cylinder is the most typical example of such a body in the two-dimensional case. The problem of a uniform 
flow of an unbounded two-layer fluid past a circular cylinder was solved explicitly in [6] using conformal 
mapping; however, this method not is applicable to a fluid of finite depth. In this case, it is convenient to 
use the multipole-expansion method (MEM) by means of which the problems of radiation and diffraction of 
surface waves by a submerged circular cylinder moving a in homogeneous deep fluid [7] were fully studied. 
The steady problem is a component of these problems. Wu [8] studied a uniform flow of an unbounded two- 
layer fluid about a circular cylinder. Linton and McIver [9] considered the diffraction of surface and internal 
waves by a circular cylinder in a two-layer fluid whose upper layer is of finite depth and whose lower layer is 
unbounded. The applications of the MEM to the solution of various wave problems were examined in [7-9]. 
The solutions obtained using the MEM are of great interest, because they allow one to analyze the effect of 
various parameters of the problem on the wave characteristics of the flow. 

The method of modeling the boundaries by singularities is a numerical method that allows the problem 
under study for a cylinder of arbitrary cross section to be solved with any given accuracy [2]. However, for 
a circular cylinder the MEM requires minimum computing expenditures and can be extended to the three- 
dimensional problem of a flow about a sphere with a similar use of the point multipoles [10]. 

1. Formula t ion  of  t h e  P rob lem.  In an undisturbed state, the upper layer of a fluid of density pl 
and thickness H1 occupies the region Izl < oo, 0 < y </ ' /1,  and the lower layer of density p2 = pl(1 + e) 
( e > 0) and thickness//2 occupies the region Ixl < oo, - / / 2  < y < 0, where x and y are the horizontal and 
vertical coordinates. A uniform flow with velocity U runs against a body in the negative direction of the z 
axis. In each layer, the fluid flow is assumed to be potential, and the total velocity potential r  y) can be 
represented as 

~'1 = - U x  + U~oj, 

where ~j(x, y) is the velocity potential corresponding to a uniform flow with unit velocity; the subscript j = 1 
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and 2 is introduced for the upper  and lower layers, respectively. In a fluid, we have 

A q o l = 0  ( 0 < y < H l ) ,  Aqo2=0  ( - / - / 2 < y < 0 ) .  (1.1) 

According to the linear wave theory, the boundary conditions on the free surface and at the interface are 
satisfied on the horizontal planes corresponding to the undisturbed state of the fluid: 

~2~I ~ I  
Oz 2 +#-ff~-y = 0  

(1 + e) a2~~ a2~o~ + ~/~ a~o~ 
c9z2 Oz 2 ~ = O, 

The other boundary conditions are of the form 

0~o2 = 0 
0y 

(y = H1); 

3~1 ~02 
Oy Oy 

at the bot tom, 

in a f a r  field, and 

(y = -/-/2) 

(1.2) 

(y ---- 0). (1.3) 

(1.4) 

O~jOx --*0 (x--,oo), IOx[ < ~ 1 7 6  ( x - - . - o o ) ,  j = l ,  2 (1.5) 

O~q (x, y 
On = nz e S) (1.6) 

on a circular contour S (z 2 + [y + (-1)qh] z = a2). 
In formulas (1.2)-(1.6), p = g/U 2, g is the acceleration of gravity, n = (nz, ny) is the internal normal to the 
body, a is the radius of the cylinder, h is the distance from the center of the cylinder to the interface (h > a), 
and q = 1 (q = 2) if the cylinder is in the upper (lower) layer. 

If the upper  layer is bounded  by a rigid horizontal lid instead of the free surface, the boundary condition 
(1.2) becomes simpler: 

~ -- 0 (y = H1). 
Oy 

The hydrodynamic  forces F = (Fx, Fy) acting from the side of the fluid on the body in flow are 
determined by integrating the  fluid pressure (without the hydrostatic term) 

P - - - v q u 2 \  Ox 2 Iraqi2 

over the surface S, i.e., 

F = / p n d s .  
s 

Introducing the polar coordinate system r, O with origin in the center of the cylinder S 

x = r s in0 ,  y+(-1)qh=rcosO (q = 1, 2) 

and taking into account that ,  for a circular cylinder 

n~ = - sin 0, ny = - cos 0, 

similarly to [7] we obtain 

(:.7) 

(l.S) 

~~ (sin O, cos 8) d$. (1.9) 
0 

Below, we shall consider the solution of the formulated problem for a cylinder located in the upper  and lower 
layers. 
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2. Cy l inde r  in t h e  U p p e r  Layer.  Using multipoles as the fundamental solutions of the Laplace 
equation, with allowance for the boundary condition (1.4) we write the solution of Eqs. (1.1) in the form 

"=I [P"• run +fro "~q"~ "~ "I-9" , (2.11 

co 

~2 = Y~ a" (p"F"  + q"a" ) ,  (2.2 / 
m----1 

where 
o o  

f "  = ((m--i):)!_ / k " - 1  cos kz{Al(k) exp [k(y - h)] + Bl(k) exp [k(h - y)]} dk, (2.3) 
0 

oo 

(--1)m+l f k 'n-1 sin kx{A2(k) exp [k(y - h)] + B2(k) exp [k(h - y)]} dk, (2.4) 
g " =  ( m - l ) ! 0  

(--1)" f kin_ 1 cos kxCl(k) cosh k(y + H2) dk, (2.5) 
F " =  ( m - l ) ! 0  

OQ 
( -1)"+1 f k "-1 sin kxC2(k) cosh k(y +/-/2) dk. 

G"  = ( m - 1 ) !  o 

Using the known relations 

eXPr m(imo) = { 
(--11" f k"_  1 exp [k(~/- h - iz)ldk 

(m - 1)! 0 

1 fk"_lexp[k(h_y+ix)ld k 
(m - 1)! o 

(y < h), 

(u > h) 

(2.6) 

(2.7) 

and the boundary conditions (1.2) and (1.3), one can define the desired functions: 

Al,z(k) = (k + p)(1 + tl) [Tl(k) 4- (-1)rapt(k) exp (2kh)] exp ( -2k i l l ) ;  (2.8) 
2 z l ( k )  

B1,2(k) = (1 + tl)T1(k) 
2Zl(k) [(p - k) exp (-2kh)  4- ( - l ) " ( k  + p) exp ( -2ki l l ) I ;  (2.9) 

Cj(k) = [(1 + Aj) exp ( -kh)  - Bj exp (kh)]/sinh kH2 (j = 1, 2). (2.101 

The following notation is introduced: 

Zl(k) -- (k 2 + et~2)tlt2 + (1 + e)k[k - IJ(tl + t2)l, (2.11) 

(ThPt )  = (~P +k)t2 -- k(1 +e) ,  tl = t a n h k H h  t2 = tanhkH2. 

The integrands in (2.3)-(2.6) can have simple poles which axe the solutions of the equation 

z1(k) = 0. (2.12) 

As is known (see, e.g., [11]), two critical velocities of the free flow UI and U2 (UI > U2) exist in a two-layer 
fluid of finite depth which is bounded by the free surface: 

l + e  ' 

w h e r e / / =  t t l  + / /2 .  For U > UI, the wave motions do not occur in the fluid; for U2 < U < U1, there is a 
wave with the maximum amplitude on the free surface (the surface wave), and, for U < U2, in addition to it, 
an internal wave with the maximum amplitude at the interface appears. 
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Consequently, Eq. (2.12) has no real roots for p < #1, has one root kl for Pl < P < #2, and two roots 
kl,2 (k2 < kl) for p > P2, where #1.2 = g/U?,2. The root kl corresponds to the surface wave, and k2 to the 
internal wave. In the integration in (2.3)-(2.6), the poles kl,2 are gone around from below. 

With allowance for the radiation condition in a far field (1.5), relations (2.3) and (2.4) take the form 

( -1 )m kx[A1 exp (k(y h)) + B1 exp (kCh y))] dk f . .  = ( : :  : ) , { p  _ _ 
0 

2 
+ r  ~ k~ n-1 sin ktx[A~ exp(kt(y - h)) + B~ exp (kl(h - y))]}; (2.13) 

I=1 
oo 

_ ( - 1 )  m + l  /kin-1 g" (m - 1)! {p.v. sin kx[A2 exp (k(y - a)) + B2 exp (k(h - Y))I dk 
0 

2 
- ~  ~2 k ? - '  cos ki~[m~ exp (kt(~ - h)) + B~ exp (kl(h - Y))I} (2.14) 

!=1 

(the abbreviation p.v. means the integral as a principal value, and the superscript 0 refers to the residue of 
the corresponding function at the point k = kl). In (2.13) and (2.14), the terms under the summation sign 
are taken into account only in the presence of the corresponding roots of Eq. (2.12). 

This solution satisfies Eqs. (1.1) and all the boundary conditions of problem (1.2)-(1.5), except for the 
impermeability condition on the body. To make allowance for the boundary condition (1.6) on the surface of 

oo (k,-)" 
exp [k(y- h + ix)] = ~ m-'--~, exp (imO), 

m.--.-~.O 

(kr)m exp (-irnO) exp[k (h -y+ix ) ]= ~-~(-1)  m m! 
m = 0  

a body, the known relations 

are used. Equation (2.1) takes the form 

oo cosmO ~r m oo [p 2 ] 
- -  (-1)nan nln+m-I + lrqn ~_, k~+m-l Jn+m-l( kt) ~,= F . p , . . "  ,.,. + - - ~ m O E  ( . -1 ) !  

m = l  mffiO m !  n = l  !=1 

sin mO ~ ," ~ , , [ 2 ] 
+ y]~ qma m r m + ~ .  sinrnO~'-~ ( n - I ) !  qnMn+m-l'}'TrPnEkr+m-iLn+m-l(kl)' (2.15) 

m----1 m----1 n----1 1=1 

oo 

I n + m - - 1  = p . v .  f kn+m-l[A1 + (-1)mBx] dk; 
0 

co 

M.+m-1 = p.v. f kn+m-l[(-1)mB2 - A2] dk; 
0 

Jn+m-l(kt) = a~ + (-1)mB~ 

L,+,n-l(kt) = A~ - ( -1)mB~ 

w h e r e  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

It is necessary to replace m by n in expressions (2.8) and (2.9) for AI,2 and BI,2. 
Differentiating (2.15) with respect to r and taking into account (1.8), we obtain the following infinite 

system of linear equations for the determination of pm and qm: 

oo (_ l )nam+,  [ 2 k " + m - ' r  'k  '] 
Pm -- E ~ ="~[ pnIn+m-] + rqn E l an+rn - l k  ,)] =- O, 

n = l  1=1 (2.20) 
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qm -- Y~ ~ . ( n -  ~ ~.  qnMn+m-1 + ~rpn ~ k~+m-lLn+m_l(kl) = -a6ml,  
n = l  / - -1  

where 6,,,1 is the Kronecker symbol. In the numerical solution of this system, the reduction method is used, 
and only a finite number  of terms necessary to achieve a given accuracy are taken into account.  

After p,,, and q,,, are found, we calculate all the characteristics of the flow. Subst i tut ing relations (2.20) 
into (2.15), we obtain an expression for the potential on the hydrofoil: 

co OZ am [p 2 ] 
~al[r=a=2 ~-~(Pm COS rnO + qm sin toO) + asia  0 + ~ ( m - -  1~' mlm-! + ~rqm~ k'in-lJm_l(kI) . (2.21) 

m = l  m----l~, ~ ]"  1----1 

With allowance for (1.9), the  hydrodynamic  forces are equal to 
oo 

F:: - 27rplU------~2 ~ re(m+ 1)(pmqm+l --qmPm+l), 
a 

,,,=1 (2.22) 
oo 

F ,  = 21rplU-----~2 ~ m(m + 1)(pmPm+l + qmqm+l). 
a m = l  

According to (2.1), the potential  of the upper  layer far from the hydrofoil has the form 
oo 

~I = ~ am(Pro fro + qmg,,) (Ix I ~ oo); 
r n - - 1  

fm =g, ,  = 0  as z ~ oo, and 

2~r(_l)m 2 k[ n-1 
fm -- - ~ - - - ~ ,  ~ sin ktztA~ exp (k/Cy - h)) + B~ expCktCh - V))], 

l--1 

27rC_1)m 2 
9m -- ( m -  1)! ~ k~rt-1 COS klz[A~ exp(ki(y - h)) + B~ e x p ( k t ( h -  y))] 

i = l  

as z ~ - c o .  With  (2.10) taken into account,  it is easy to determine the potential  of the lower layer ~2 in the 
far field. The  wave mot ion  exists only behind the body and, generally, represents a superposi t ion of two waves: 
a surface wave and an internal  wave with wave numbers  kl and k2, respectively. Knowing the potentials in 
the far field, one can de termine  the vertical displacements of the free surface r/l(z) and the  interfaces ~12(z) 
far behind the body: 

U 2 0 U 20qox , r/2(z) = ~ ~x[(1 + e)qo2 - ~1]~=0. 
= T 0 - 7  

We consider some particular cases of the solution of this problem. For e = 0, we have a single-layer 
fluid of depth  H. This  case is the most  studied, and calculations of various characteristics of the wave motion 
for a circular cylinder were given in [12-14]. In this flow, only a surface wave arises if the condition U < 
is satisfied. 

If the lower layer of a two-layer fluid (//2 ~ co) has an infinite depth,  in (2.11) we have Zl(k) = 
(p - k)[(ep - k)tl - k(1 + e)]. The  surface wave is excited at any velocity of the incoming flow, and the pole 

kl = g corresponds to this wave. The  internal wave arises only for U < x/eeH1/(1 + e). 
This solution is considerably simplified for an unbounded two-layer fluid (H1, / /2  ~ oo). In this case, 

the internal wave exists at all flow velocities and relations (2.13) and (2.14) take the complex form 
o o  

fm+ igm -- ~-~:'~)](--1)m7 [p.v. / k  m-1 k -  # v + h + ix))dk + i*rura-l(u - p ) e x p ( - v ( y  + h + ix))] 
0 

where v = -'/p and "7 = e / (2  + e). We introduce the notat ion 

Sm= pm+ iq,-,,. (2.23) 
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System (2.20) takes the form 

an+raSH [In+m--1 -- irun+m--l(u -- I ~) exp(-2uh)] = - ia6ml.  Sm - (--1)m7 Y]~(--1)n m!(n--  1)! 
n = l  

Here 
oo 

IN = p.v. -- / k N k - Iz exp (-2kh)  dk 
k - v  

0 

and is calculated by the recurrent formula 

( N  ) ( N -  1)! 1 (v - /~ )  Ei (2vh) exp(-2vh) ,  (2.24) I jv=  - /~  (2h)/V +uI~v-1, Io=2-h- 
where Ei(z) is the integral exponential function (see, e.g. [15]). The hydrodynamic load calculations for this 
case were reported in [8]. 

It is of interest to study this problem in the limiting cases of U --, 0 (/~ --* co) and U --* co (p --, 0). 
For/~ --* co, the gravitational forces dominate over the inertial ones, and the boundary conditions (1.2) and 
(1.3) take the form 

0~a 
Oy = 0  ( y = H a ,  y = 0 ) .  

Just as the interface, the free surface also becomes equivalent to a rigid lid, irrespective of the magnitude of 
the density jump. The problem is reduced to a flow about a circular hydrofoil located between horizontal rigid 
plates in a layer of thickness/-/1. The integrals in (2.16) and (2.17) are reduced to the sum of the integrals of 
the form 

oo / ( 1 ) 
VN = U v 1 + tani-a fl'k exp ( - a k ) d k  (N > 0, a > 0), 

0 

which can be calculated using the Pdemann zeta-function ~" (formula (3.551(3)) from [16]): 

( TIN = 2#fl#+a ~ N + I, . 

It was noted in [3] that the lift force Fy undergoes a discontinuity for e = 0 and as/~ -* co, because, 
assuming that e = 0 and passing to the limit as # --, co, we obtain the flow about a body located between 
rigid plates in a layer of thickness H. 

For a weightless fluid (# ~ 0), the boundary condition (1.2) and the first condition in (1.3) at the 
interface take the form 

Cpl -~- 0 (~/ ----~ H1), (1 + e)~2 = ~1 (y = 0). 

Here no wave motions are generated, and, hence, the wave resistance Fz is zero. For e = 0, the discontinuity 
of the lift force is absent. 

We also consider the case where the upper layer is limited from above by a rigid lid rather than the 
free surface. Here expressions (2.1)-(2.6) have the former form and instead of (2.8)-(2.11) we obtain 

Aa,2(k) - -  1 + tl [Tl(k) 4- ( -1)mPa(k)  exp(2kh)] exp(-2kH1),  
2Z2(k) 

Ba,2(k) = (1 + ta)Tl(k) [exp ( -2kh)  4- ( -1)  m exp (-2kH1)], 
2Z2(k) 

where Z2(k) = r - -k[ t2  + (1 + e)q]. The only real root of the equation Z2(k) = 0 exists only for 
U < r + (1 + e)H1] and corresponds to the internal wave. Introducing these changes, we obtain 
the above solution. 
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3. Cy l inde r  in t h e  Lower Layer. If the cylinder is under the interface, the method of solution is 
very similar to that described above and we outline it briefly. We present the solution of Eqs. (1.1) in the 
form 

x - - , r n [ [ c o s m O  ) ( s i n ~ n 0 ) ]  
~1 = Y~ am(pmFm+qmGm), ~2 = 2.., a IPml :Z  +fro +qm +gin , 

m----1 m = l  L \ r 

where 
oo 

f kx[Cl( k ) cosh k(y - H1) + Dl ( k ) sinh k(y - H1)] dk, F m =  ( m -  1)! 0 

co 

1 fkm-lsin kx[C2(k)coshk(y - H1) + Dz(k)sinhk(y - H1)]dk, Gm - (rn - 1)! 0 

1 fk~_~coskx{Aa(k) exp[k(y+h)]+Bx(k)exp[_k(y+h)]}dk,  
f m =  ( m -  1)! 0 

co 

1 f k m-1 sin kx{A2(k) exp [k(y + h)] + B2(k) exp [-k(y + h)]} dk. 
g "  = ( m -  1)! 0 

Using (1.7), the analog of relations (2.7) for this case, and the boundary conditions (1.2)-(1.4), we obtain 

A1,2(k) ---- (k + p)(1 + t2)T2(k) 2Zl(k) [exp ( -2kh)  4- ( -1 )  ra exp (-2kH2)], 

B 1 , 2 ( k  ) ._ (1 + t2) 2zl(k) exp (-2kH2)[(k + g)T2(k) ~: (-1)m(k - ~,)P2(k) exp (2kh)], (3.1) 

Cj(k) = z[Ai exp (kh) - (1 + Bi) exp (-kh)] Dj = k 
k cosh kHa - # sinh kH1 ' ~ Cj (j = 1, 2), 

where (T2, P2) = (ep 4- k)tl - k(1 + e). The potential in the lower layer is 

o o  cos mO ~_~ rra o o  an [p 2 ] 
~ =  E p . a  m , ~ +  - - c o ,  r a 0 E  ( . = 1 ) !  "I~+' - '+~q"~kl '+m- lJ"+' - l (k~)  

m = l  m = O  m [  n = l  I = I  

, s inm0 ~.~ r m ~ a n [  2 ] 
+ ~ qma m , ~ +  ~ s i n m 0  ( -=1) !  q"M"+m-~+'~P"~k';+m-~L"+m-~(kt)" (3.2) 

m----1 m = l  n = l  /=1  

The expressions for IN and L/v coincide in form with those given in (2.16) and (2.19), and the expressions 
for MN and JN differ from (2.17) and (2.18) by the sign. 

The system for determining pm and qm has the form 

pro---- ~ m!-'~--- 1)! nln+m-1 + rqn ~_,k~+m-lJn+m-x(kl) =0 ,  
n-~ l  I----1 (3.3) 
~ am+n [ 2 ] 

qm -- -- ~ m!(n-- 1)! q,,M.+,,,_~ + ,~p,, ~ k~+'-'L,+m_~(k~) = -oZm,. 
n----1 I----1 

For the potential ~2 on the cylinder surface, expression (2.21) is true. After replacing pl by p2, the relations 
for the hydrodynamic forces coincide with (2.22). For a boundless two-layer fluid (HI, H2 ---, cr we have 

fm +igm= ( m - l ) !  p.v. k m-l k+pk_V e x p ( k ( y - h + i x ) ) d k - i r r v m - l ( v + # ) e x p ( v ( Y - h + i z ) )  " 
0 
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The system for determining Sm (2.23) has the form 
o o  an+m ~n 

Sm + 7 ~ rn."~(n---'i-)! [I.+,n-1 + i~'vn+m-Z(v + it) exp ( -2vh)]  = -iadf,.z, 
n=l 

where 
O 0  

IN = p.v.--/k g k + #  exp ( -2kh )  dk. 
k - u  0 

The values of IN can be found by recurrent formulas similar to (2.24). The hydrodynamic-load calculations 
for an unbounded two-layer fluid were given in [6, 8]. 

With the free surface replaced by a rigid lid, instead of (3.1) we obtain 

7"3(1 + t2) [exp ( - 2 k h )  + ( - I )  m exp (-2kH2)],  
A1,2(k) = 2Z2(k) 

BI,2(k) - (1 + t2) [T3 -4- ( - I )  m exp (2kh)] exp ( -2kH2) ,  
2Z2(k) 

Cj = [(1 + Bj)  e x p ( - k h )  - Ar exp(kh)] / s inhkH1,  Dj = 0 (j = 1, 2), 

where (7"3, P3) = [#c 4- k(1 + ~)]tl - - k .  With allowance for these changes, expressions (3.2) and (3.3) are 
reproduced in this case. 

4. N u m e r i c a l  C a l c u l a t i o n s .  The numerical results for the particular cases of these problems coincide 
with known results [6-8, 12-14]. 

Calculations of the hydrodynamic loads versus the Froude number Fr = U/V,'~ are shown in Fig. 1 
for a cylinder located in the upper layer and in Fig. 2 for a cylinder located in the lower layer. We introduce 
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the notation (Fz, Fy) = ( -Fz ,  Fy)]pqaU 2 (q = 1, 2) and various scales on the abscissa in the intervals [0; 0.2] 
and [0, 2.41. 

Curves 1 and 2 in Figs. 1 and 2 refer to the calculation results for the case where the upper layer is 
bounded by a free surface for r = 0.03, curves 3 and 4 to similar results for e = 0 (the one-layer fluid of 
depth H), and curves 5 and 6 to the calculation results for a two-layer fluid under a lid (e = 0.03). The 
calculation results in Fig. 1 were obtained for constant values of the thickness of the upper layer and the 
depth of submergence of the cylinder: Hl/a = 4 and h/a = 2. The odd curves correspond to H2/a = 1, and 
the even curves to H2/a = 10. The arrows indicate the values of the critical Froude numbers; the upward 
arrows refer to H2[a = 1, and the downward ones to H2/a = 10. Figure 2 shows calculation results for the 
cylinder in the lower layer for H1]a = 1 and h]a= 2. The odd curves correspond to H2]a = 4, and the even 
curves to H2[a = 10. In Fig. 2, the upward and downward arrows refer to the critical Froude numbers for 
H2[a = 4 and H2[a = 10, respectively. Figures lb and 2b indicate the critical Froude numbers for a two-layer 
fluid bounded by a free surface, and Figs. lc and 2c for a two-layer fluid under a lid and a one-layer fluid with 
a free surface. The horizontal dot-and-dashed curves in Figs. 1 and 2 show the limiting values of the lift force 
of the cylinder in a weightless fluid (Fr ~ oo). 

Comparison with the results of [6] showed that, to attain a calculational accuracy of up to 10 -4, it 
suffices to take into account only eight terms in the solution of the linear systems (2.20) and (3.3). 

The special feature of the components of the hydrodynamic load in a fluid of finite depth is the 
appearance of discontinuities upon passage through the critical velocities. It shows up most strikingly for 
comparable dimensions of the cylinder diameter and the entire depth of the fluid. As the layer thickness 
increases, the discontinuities in the values of the hydrodynamic forces decrease and disappear at an infinite 
depth (see, e.g., [1]). The discontinuities in the values of the hydrodynamic forces upon passage through the 
critical velocity are the shortcoming of the linear approximation used, and it was suggested in [13] to take 
into account the nonlinear effects in the neighborhood of these velocities by a longwave approximation. 

The wave resistance is markedly increased as the full depth of the fluid decreases (Figs. la  and 2a), 
which is attributed to the increase in the horizontal velocity in the neighborhood of the body owing to the 
effect of flow encumbering and the resulting increase in the wave amplitudes (for details, see [14]). 

It follows from the analysis of Figs. 1 and 2 that the stratification effect is insignificant at large flow 
velocities when only the surface wave is generated, and the "rigid lid" approximation satisfactorily describes 
the hydrodynamic loading at small flow velocities when the internal wave is generated most intensely. 

This work was supported by Joint Project No. 43 of the Siberian Division of the Russian Academy of 
Sciences. 
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